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SUMMARY

This report describes a method of analysis and digital
program for computing the vibrational mode shapes and
frequencies of linear orthotropic shells of revolution. An
approximate energy method (finite element) is employed,
and solutions are computed using an iterative process

similar to the Stodola-Vianello method for beam analysis.

In developing the program, primary emphasis was
placed on numerical accuracy, generality, minimum input
requirements, and economy of computer execution costs,
One of the program's components which is independently
useful for other applications is a very general routine for
computing solutions corresponding to arbitrary static

loadings.

Several examples are presented of solutions computed

by the program.
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Section 1

INTRODUCTION

Exact analytical solutions to shell problems can be obtained in only a
few special cases. Accordingly, in recent years attention has been directed
toward developing computer-oriented methods of obtaining accurate approxi-

mate solutions to various general classes of shell problems.

Straightforward finite-difference equations have been used success-
fully in some applications. However, complicated problems (such as those
involving irregular geometry) frequently involve solution of large numbers
of poorly-conditioned simultaneous algebraic equations or high-order
eigenproblems; accordingly, accumulation of arithmetic round-off error

may be a significant factor.

The recent trend has been toward the use of finite element methods.
The point of view usually taken in this approach is that the shell (or other
structure) is represented as an assemblage of interconnected elements; and
that the displacement field over the interior of each element is approximated
as a specific function of the motion components of its boundary nodes.
Alternatively, finite element techniques as usually applied may be regarded
as approximate energy methods; and, provided that deformation compatibility
requirements across all element boundaries are properly accounted for, the
number and form of the displacement functions is entirely arbitrary. Without
resorting to lumping of distributed mass or distributed applied forces at
element boundaries, Lagrange's equation may be used to obtain system equa-
tions corresponding to the selected set of displacement functions. For free
vibration of shells of revolution, independent sets of solutions exist for each

circumferential wave number.

There are significant differences between ordinary finite-difference

techniques and finite element methods which may be illustrated by the
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following example. Suppose a shell of revolution is analyzed in two different

ways as follows:

1. The shell is represented as n annular finite elements of
equal length., Within each element, the displacement field
is approximated by a linear combination of eight independent
functions, such that there is a one-to-one correspondence
between the function coefficients, o; (i=1 through 8), and the
displacements and rotations of the element boundaries (i.e.,
the eight a's may be expressed in terms of the three dis-
placements and the meridional rotation at the element's
boundaries). Accordingly, all deformation compatibility
requirements are identically satisfied if the 4(n+1) boundary
motion components are chosen as generalized coordinates.
(Some other 4(n+1) linear combinations of the 8n a's could
have been selected as generalized coordinates, provided the
compatibility requirements were properly accounted for.)

2. The problem is analyzed using a standard finite difference

technique involving solution of four coupled difference

equations in the three displacements and the meridional

rotation. The difference net is composed of n+l equally

spaced points.
Similarities between the two approaches are evident; both involve a banded
set of 4(n+1) algebraic equations in the same variables, namely the displace-
ments and meridional rotations at n+l equally spaced locations along the
meridian of the shell. Accordingly, the computational efforts required to
execute the two procedures would not differ substantially, However, it is
generally the case™ that unless n is very large, the energy method is sub-
stantially more accurate than the finite difference method. Also, accumu-
lation of arithmetic round-off error increases substantially with large n, so

that consideration of both computer execution cost and numerical accuracy

strongly favors the energy method.

Investigators using finite difference methods have employed several
different procedures to compute the free vibration characteristics of shells

of revolution, including**:

sk
This is readily shown by comparison with exact solutions for a wide variety
of static and dynamic beam, plate and shell problems.

**See e.g., Cohen (1964, 1965), Kalnins (1964, 1965), Klein (1964), and
McDonald (1965).
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l. Iteration of "assumed' frequencies until the required boundary
conditions are closely approximated (similar to the well-known
Mpyklestad method for computing beam modes and frequencies),

2. Iterative improvement of a succession of approximate mode
shapes (similar to the Stodola-Vianello method applied to
beams), using orthogonality relations to '"sweep out' lower
modes, in computing higher modes, and

3. Direct solution of large-order matrix eigenproblems of the
form (W2M - K)X = 0, where the elements of the generalized
coordinate vector X are the finite-difference variables,

Investigators using finite element methods have usually taken an approach
gsimilar to the last one outlined above, except that the generalized coordinates
are the node point motion components, Using standard solution techniques |
(e.g., Cholesky-Givens, Wilkinson, etc.), this procedure is limited by steeply
rising computer execution costs, numerical accuracy problems, and data
storage limitations to relatively low order eigenproblems; accordingly, it
is restricted to systems which can be well represented by a relatively small

number of elements.

The formulation presented in this report uses a finite element approach.
The solution technique used is an adaptation of the one described by Whetstone
and Jones (1968) for computing the modes and frequencies of arbitrary linear
space frames. In solving for the 7" mode (associated with a particular cir-
cumferential wave number), the state of the shell is characterized by the
coefficients of J whole-structure displacement functions, the first J-1 of
which are previously determined accurate approximations of the first J-1
modes, and the Jth function is an approximation of the Jth mode shape. The
highest-frequency solution to the corresponding Jth order (wZM -K)X=0
eigenproblem gives an interim approximation of the Jth mode, which in turn
is used to compute an equivalent static loading from which a further improved

h

approximation of the Jt ‘mode is evaluated. This process is executed re-~

peatedly until the desired accuracy is achieved.
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Section 2

FREE VIBRATIONS

2.1 EQUATIONS OF MOTION

The free-vibration mode shapes of linear shells of revolution can

easily be shown to be of the form

u(é, @) = um(f) cosmde
v, Q) = Vm(s) sinm
w(€, @) = Wm(E) cosmy

where @ is the circumferential angle, £ a meridional position coordinate,
and u, v, and w the meridional, circumferential, and radial components,
respectively, of the mode shapes. Except for a few special cases, the

modal functions u , v, and w  cannot be determined in closed form.

In the present analysis, shells of revolution are modeled as assem-

blages of finite elements, as shown on Figure 2-1. The elements are

labled r = 1, (1), n and the element boundaries r = 1, (1), nt+l.

. ]
Meridian r+l P— 0

Element

Axis of Revolution

1 ' ! r -+ T

'1 2 3 ' ''r-1 r r+l ri2 n n+1
Element Boundaries

Figure 2-1 - Axial Section of Shell Model
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In the finite element formulation, developed in detail in Sections 3 and
4, the displacement components over the interior of each element are

approximated as cubic functions of the meridional position coordinate, &.

In terms of a set of generalized coordinates which will subsequently
be discussed in detail, the kinetic and potential energies, T and V,

respectively, of a shell may be written as follows:
X N N ,
T = > E E ¢; Mij Cj' and (2-1)

(2-2)

<
]
o) —
Mz
Mz
L0
e
a

. £
The c.'s are coefficients of whole-shell displacement functions , Mi' and

Kij are the generalized mass and stiffness coefficients, respectively, and

v _ d
( ) - dt .
The Lagrangian function is defined as
L =T-V, (2-3)

and Liagrange's equation for undamped free vibration is

d (oL oL .
37(@)'5—0_1 =0 i=1,(l),N. . (2-4)

Substitution of Equations (2-1) and (2-2) into (2-4) gives the equations

>:< . .
The index, m, is omitted for convenience.

2-2




LMSC/HREC A791267

of motion as

N N
E M., &, + szc =0 i=1,(1),N. (2-5)
: ij 7j ij 7

j=1 j=1
Assuming solutions of Equation (2-5) of the form
c. o 'c'j sinwt , (2-6)

one obtains

N N
z @ M, T, - E:K T. =0 i=1,(1),N. (2-17)
1 ) iy )
j=1 =1
Equation (2-7) is written in matrix form as
. B .
o  Mc-K¢ = 0, (2-8)

where M is the matrix of Mij's and K is the matrix of Kij's, termed the

"mass' and ''stiffness' matrices, respectively, and

3

(<,

of

2
E3
T = b . (2-9)

C.
\ "N

The M- and K-matrices must be determined for the whole shell, but, since
the system is modeled as an assembly of finite elements, the kinetic and

potential energies of a typical element are considered first.
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In this formulation the generalized coordinates, c., j =1, (1), N, are
defined to be coefficients of displacement functions. Where -1'1;(5,(0), j=1,
(1), N, are the values of those functions over the r-th element, the deform-

ation pattern of the r-th element for the m-th circumferential mode may be

written as-

u’ (£,0,t) = cja“;" £, 9) . ' (2-10)

e

where

r

u§nr (§) cosmy )

mr

ﬁ; (6.0) = ¥ (8 sinm(pL . (2-11)

mr
W.

\ J

(&) cosmcﬁ

For simplicity in formulating the potential energy, it is assumed that
the static loading function is known which produces the deformation pattern

ﬁ;(ﬁ,go). It is expressed as

_p;(ésp) = {p (2-12)

vj [

so that N

r _ -r
p (§,ot) = Zl ° pj(é,qo). (2-13)
J:

The components u;’nr' vmr, and w]fnr, and the coordinates § and @ are

. . . mr mr mr
defined in Section A.l. The load components puj s pvj , and pwj

correspond in direction to u, v, and w, respectively.

2-4




LMSC/HREC A791267

The mass per unit area is given by

u(§) = p h(§) (2-14)

where p is the mass per unit volume, and h(f) is the shell thickness.
With the metric coefficients A(£) and R(£), defined in Section A.1, and with
the effect of rotatory inertia neglected, the kinetic energy of the r-th
element is

’ 2T I"r N ) N
T = %f / w8 Z & al (g, ) Z & U7 (5,9) AlE) RI§) 4§ do =
0 o0 i=1 j=1

N T L
>3

2
¢, / f w6, <P)u "(8,0) A(E) R(£) a¢ de C » (2-15)
0 O

Nlr—-

i=1 j=1
where L. is the length of the element r.

Similarly, the potential energy of the r-th element is

2w L
r 1 r o e N
vz Zci w9 Z c; Py (§,9) Al§) R(§) 4§ d¢ =
0o o i=l j=
N N 27 Lr
=%ZZ°1[/ Tl (é,cﬂ)p (6,9) A(§) R(§) d¢ do c; - (2-16)
izl =1 5 0

The two integrals are defined as

2m L
W= [ RO F e G0 a0 RO e, (2-17)
0 O '
and 2m L. '
&y - f AU DL R (2-18)
0 0
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so that

<
21
1}

] —
=
M=

0

e

|

&R

v...n

The kinetic and potential energies of the whole shell are

n N N [‘n 1
: r 1 . -r}.
T = T = > C. M . |¢., and

z : z: 2: i § : ij| 7

r=1 i=1 j=1 L =1 4

Tl 1 N N (n b
vV = E vi o= = E E c, Z :1<3 c..
2 i ij | i

r=1 1=1 J:l L r=1 "

Comparison with Equations (2-1) and (2-2) shows that

n
M,. = E : M., and
1j 1]
r=1
0 -1
K.. = E K..
1] 1]
r=1

2.2~ SOLUTION BY ITERATION

Solutions to Equation (2-8) can be accurately obtained by means of
several well known numerical methqu, provided the equations are well
conditioned and not of too high order. These conditions are obviously

dependent upon the number and nature of the generalized coordinates.

(2-19)

(2-20)

(2-21)

(2-22)

(2-23)

(2-24)

The following discussion is concerned with whole-shell deformation

patterns corresponding to particular static loadings as coordinates.

2-6




LMSC/HREC A791267

Suppose the shell is subjected to a set of static loading functions of the
form of Equation (2-12), and the corresponding deformation pattern is deter-
mined. If N functions are used, an N-th order eigenproblem of the form
of Equation (2-8) arises, in which the coordinates, cj, are simply coeffi-

cients of the N whole shell deformation patterns.

The success of this method is contingent upon a judicious choice of
loading functions. An iterative procedure for obtaining a succession of
improved functions is discussed below and the method used for static

analysis is presented in Section 3.

Suppose that very accurate approximations to the first N-1 modes are
known. Then, if one chooses those functions as the first N-1 displacement
functions corresponding to generalized coordinates Cir Cps cres O and,
in addition, a function approximating the N-th mode, the matrices in

Equation (2-8) appear as

_ ay -
My My, My; . o . My
(1)
(1) (1)
M = M33 . . . M3N ’ and
| )
Symmetric MNN
2-7
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(1 7]
Kip K2 Kp3 - BN
(1)
Koz K23 KN
(1) (1)
K K,, . Ky (2-25)
Symmetric (11{)

The superscript (1) denotes the first approximatioh to the N-th mode shape.

S

a

olutions to Equation (2-8) are the previously determined first N-1 modes,

nd an upper bound approximation to the N-th system mode. Therefore,

&
the first N-1 eigenvectors are nearly of the form

, | 0 , 1 . 0 , respectively.

b4

If the first N-1 modes were known exactly, the eigenvectors would be as
shown; however, some residual arithmetic error is always present, so
that these functions are not identically orthogonal. Instead, the terms
shown as zeros are actually numbers of magnitude much smaller than unity.
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(1)

The eigenvector, 'c':'N, associated with the highest frequency solution,

(1)

W of Equation (2-8) is represented as

( 3

(1) (1)
ey =) Can | (2-26)

(1)

L °NN

From Equation (2-10) one obtains the first interim approximation to

the N-th system mode as a set of elemental deformation patterns defined as

(11 N oy .
iy e = ) TN (e (2-27)
=1

where E: (€,0), as defined by Equation (2-11), describes the deformation of

the r-th element associated with the j-th whole-shell mode shape.

After such an approximate solution has been computed an improved
approximation can be calculated as follows. From the interim approxima-

tions a set of element inertial loading functions is generated as

@) (1)

2-9
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The deformation of the shell corresponding to this static loading is the
second approximation to the N-th system mode. The procedure is repeated

until satisfactory convergence is reached.

Several criteria are available for determining acceptable convergence;
some of these are

(2) (£-1)

(a) wN is approximately equal to wN

(£) (£) (£) )
(b) MiN and KiN are much smaller than M and K

NN NN’
respectively, for i = 1,(1), N-1.
@ o
(c) ciN are much smaller than NN fori=1,(1),N-1.

It is interesting to note that the off-diagonal terms of Equation (2-25)
except those of the N-th rows and columns are many orders of magnitude
smaller than the diagonal terms. This is a result of orthogonality of the

free vibration modes 1 through N-1.

Initial approximations may be prescribed either by directly stating
the displacement field or by allowing the program to compute the displace-
ment function corresponding to a specified static loading. Experience has
revealed that crude approximations are adequate because of the rapidity of

convergence of the repetitive solution technique.

The only obvious pitfall in selecting an initial approximation is that of
choosing a deformation pattern for the N-th system mode which is a linear
combination of modes 1 through N-1. In this case the matrices of Equations
(2-25) are singular. This error is more likely to occur with higher values
of N; therefore, since lower system modes are usually of primary concern
and the probability of such an occurrence is slight, this is not considered

a serious weakness of the method.

2-10
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Section 3
STATIC ANALYSIS

Execution of the repetitive procedure described in the preceding
section requires solutions to statically loaded finite element shell assemblies
with specified boundary conditions, that is, displacement fields, 2, have to

be obtained for given static loading functions, 2P

These solutions are obtained through application of the theorem of
superposition for linear structures so that the desired complete displace-

ment fields are given by
‘@ = zl + ZZ *

,7)1 is the displacement field obtained by restraining all element boundary
motions and subjecting the 'fixed edge' eclements to the loading, F. With
element boundaries unrestrained (except for specified boundary conditions),
,@2 is the displacement field produced by -, where & is the set of element

boundary reaction loads corresponding to ,@1.

A variation of this method is described below. It is a state vector
"walk-through'' procedure, in which, unless otherwise specified, primed
quantities refer to the right boundary and unprimed quantities to the left

boundary of an element.

’

The total forces, £* and ft, at the boundaries of the r-th element may

be represented as

£5(x) £ (r) £ (r)
- + ) (3-1)
£(z) £ () £ (r) |
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’
where {, f are the forces required at the boundaries of an unloaded

element subjected to boundary deformation, and ff R ff

are the forces
required at the boundaries of an element subjected to applied surface loading
and restrained against boundary deformation. The latter are termed fixed

edge forces.

The boundary force-displacement relationship of the r-th finite

element is expressed as

£(r) Ky (@) Ky, [alx)
..... =l R L LTSIy SRRt Ry S (3-2)
£(r) K, (r) 1 Kyy(r)| [a'()
so that the total forces are

t 1 f

£(r) Ky, (r) 1 Ky,(r) a(r) £ (x)

et Il [ mmm————- el B S Gt (3-3)

'] [ Ky 1 Km ] de) £ (r)

where q(r) and q’(r) represent the three displacement components and the

meridional rotation of the left and right boundary, respectively, and
K1 1(r) Klz(r)
Karlr) Kaplr)

is the r-th element stiffness matrix. The derivation of this relation is

presented in Section 4.

Equation (3-3) is rearranged to give an explicit expression for q° and

ft, so that

3-2
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’ -1 1 -1
TEL 1 Ee P I T B L
t/ -1 i -1 t
£(r) Ko1Ky Ko Kpp 1 Ky Ko | [£(0)
(r)
-1 t ‘ f
-K ' D £7(r) 3
+ e a4 , . (3-4),'
-1 £
-KZZ KlZ: 14 £ (r)
(r)
To simplify Equation (3-4), the vectors,
q’(r) q(r)
, and
£5(r) £5(r)
are defined as state vectors, s” and s, respectively, and the matrix
-1 ! -1
-K K K
- 12 11 l 12
T(r) = [-ommmmedfe 2t , (3-5)
-1 1 -1
Ko -Kop Ky Kyt Ky Ky
(r)
and the vector
— KI;. E ¢, £ (x)
e R A o (3-6)
- |
Koy Kppt 1 £ (x)
' (r)

are termed the transfer matrix and the load vector, respectively. Equation

(3~4) can now be written as

4 represent 4-th order zero and identity matrices, respectively.
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s’(r) = T(r) s(r) +E(r) (3-7)
for the r-th element,

Compatibility of deformations and equilibrium of forces are required
at the (r+1)-th element boundary common to the two contiguous elements (r)

and (r+l). Deformation compatibility is given by

q’(r) = q(r+l). (3-8)

Force equilibrium is described by the following equation

Id

£8r) + £5(c+l) + Rir+1) '(z) + Pr+l) = 0, (3-9)

where K(r+l) reflects an attached elastic ring system at the element boundary

(r+1), and p (r+l) is an externally applied ring load.

Equations (3-8) and (3-9) can be combined into a matrix equation

of the form

s(r+l) = J(r+l) s’(r) + p(r+l) (3-10)
where
I )
J(r+l) = ---—%—---:--—-z-;- , and
-K(r-l-l): -I4

Substituting Equation (3-7) into (3-10), one obtains the governing difference

equation with variable coefficients as
s(r+1) = J(r+l) T(r) s(r) + J(r+l) E(r) + p(r+l). (3-11)

3-4
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For the more common case of K(r+l) = 0 and p(r+l) = 0 Equation (3-11)

simplifies to
s(r+1) = J(T(r) s(r) + g(r)

in which

with
T(r) = JT(r) and gir) = Jg(r)

Equation (3-11) becomes

s(r+l) = T(r) s(r) + g(r) . (3~12)

As outlined below the solution to this difference equation is obtained
in two steps:
(a) the unknown quantities of the two states s(1l) and s(n+tl) are
found for given boundary conditions and given loads,

(b) the interior states are computed from the difference
equation (3-12) using s(1) as an initial vector.

From Equation (3-12)

s(2) = T(1) s(1) + g(1)
s(3) = T(2) T(1) s(l) + T(2) g(1) + g(2)
. ' " n-1 N ) ” '
stntl) = ( [T (r)) s(1) + Z I 76 gn)|+gm=asl)+e. (3-13)
=1 i =1 j=1‘+1

3-5




LMSC/HREC AT91267

Equation (3-13) is simplified to

y = Ax+te (3-14)
where

y = s(ntl) and x = s(l).

The boundary state vectors are partitioned into known and unknown

quantities so that

=% =P x, =y =Py - (3-15)

in which ;ik , T’k are the knovin, z_iu

Py are permutation matrice s . Equation (3-14) can now be rewritten as

, y.. are the unknown quantities, and P_,
u X

1

y =P AP. X+P_e. (3-16)
Yy X Yy
With
A =P Ap"l, and
Y
e = P e
Yy
Equation (3-16) becomes
v =Ax+e. (3-17)

The unknown boundary quantities are determined by partitioning

Equation (3-17) in the following manner:

1
Vi 111 12 xx 1
——— - = _:._..-:..:-.._ -——- + -————
— — —
Y Aprr B X e,

D

Permutation matrices for various boundary conditions are discussed in
Appendix A, 3,

3-6
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and solving for Eu and Sr'u , so that

— 1 L
*4 A2 A Rt | 2 0118
i (TR Rl il Rty Miciniilletet | |z

- ! V. - e
Yu Aa1 A2 A A Ao A1) Ukl Lfez A2 M (%

R
Xy = Ao (g - A X -F)), and
Vo = Ap) ¥ 1A, E +E,

For cases in which the known boundary quantities are zero, the solution is

D
X, T B2
Yu = AZZXu+eZ'
The state at r=1 is
-1 —

and the states at r=2, (1), n are obtained by successive use of Equation
(3-12).

3-7
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Section 4
FINITE ELEMENT

4.1 GENERAL

In recent years the literature on finite element methods and various
types of elements has increased so vastly that only a few of the papers can

be mentioned here.

To analyze a structural system composed of an assemblage of finite
elements and exposed to an arbitrary loading, one must obtain for each
element

1. Equations relating the boundary displacements to the boundary

forces of the element not subjected to any distributed loading.

2., Boundary forces required to equilibrate the loaded element
when its boundary displacements are identically equal to zero
or, '"fixed!'.

Relations between boundary displacements and forces were derived by
Gallagher (1963) in matrix form. A stiffness matrix was derived with an
assumed meridional power series displacement pattern in which the number
of coefficients was equal to the number of generalized boundary displace-
ments of the element. Pian (1964) showed by the principle of minimum
potential energy that taking more terms in the displacement function
improved equilibrium in the interior of the element and led to an improved
stiffness matrix. Klein (1964) applied both methods to various structural
elements (such as straight and curved beams, circular plates, and cylindri-
cal and conical shells). Instead of computing the true fixed-edge forces, he

simply lumped the external loading at the boundaries of the elements.

In the following two parts of this section the stiffness matrix and the

fixed-edge forces are derived for an element of a shell of revolution.

4-1
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The finite element is chosen to approximate any given shell of revolution
as closely as possible. The fixed edge forces are found by the use of

influence functions.

4,2 STIFFNESS MATRIX

In previous finite element analyses, shells of revolution were dis-
cussed as assemblies of conical frusta. This modeling introduced residual
moments due to the abrupt change of meridional slope. It is therefore
desirable to use a shell element that will match the meridional radii and
slopes of the model at the element boundaries with those of the actual
structure. Such an element is one with a curved meridian as shown on

Figure 4-1.

(a) Isometric View (b) Section Parallel to Axis

Figure 4-1 - Shell Element with Curved Meridian

4-2
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For this element, the radius as a function of the coordinate § as

shown on Figure 4-1b is assumed to be

R(E) = ag+a & +a,80 +a 6

where
ao = a
a; = tany
a, = --l—(tan'-i-'Ztan )-—g—(a-a”)
2 L\t V-T2
- 1 ’ 2 ’
a, = -—5 (tany +ttany)+— (a-2a") (4-1)
3 LZ LZ

Two special cases are the conical element, where

ag = 2, a, = tany , a2=a3=0,
and the cylindrical element, where
ag = a, a1=a2=a3=0

The displacement pattern of an element is characterized as a power
series along its meridian and a Fourier expansion in its circumferential

angle, so that

o

u(¢, @) (§) cosmg,

m

v(é, ) (£) sinme , and

m

N
"
07 202 20
<

w(&,) wm(ﬁ) cosmq (4-2)

2
1
o
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where

oM
5

m€3

m 2
+Q6§ +09€ +0(10

u (5, ¢)

2 3
v_(£,9) = oo + og € + o] &5+ a4

~J

Wm(f,cp) = orlin + ox;e + anéz t

}

mE3

4 (4-3)

The coefficients O(;n are labeled in this particular pattern to place emphasis

on the w-displacement.

The rotation of the meridian can be derived from Figure 4-2.

e

Figure 4-2 - Rotation of the Meridian

4-4
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From Equation (A-5) in the Appendix
dx = A d§ ,

so that the rotation of the meridian is expressed by

1 . 1

Om(E) = i Wm(f) - R_€ um(f) (4-4)

where ( ),= 5% .

The boundary displacements are represented by U, V, W, and U/ 12 W as
shown on Figure 4-la, and the meridional rotations of the boundaries are
denoted by 8 and 0’. The boundary stress resultants are shown on Figure
4-3, where S and T are the effective out-of-plane and in-plane shears,
respectively. All boundary forces are assumed to be positive in the direction

of positive boundary displacements.

Figure 4-3 - Boundary Forces on Shell Element

4-5
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Considering the m-th term of the Fourier expansion, called the m-th
harmonic, one can define an elemental stiffness matrix, Km, which relates

the boundary forces to the boundary displacements, so that

fm = Km 9 (4-5)
in which . W . W
N
m m
T
m m
18
m
Mm Om
f = r , and q = (4-6)
m . m ’
N
m m
T! rd
m m
s’ -
m m
M/ 0)
L mJ L m J

Evaluation of Equations (4-3) and (4-4) at the boundaries §=0 and (=L gives

famw
]
am
2
r 3 1 = m
u_ 0 0 0 0o 1 0 0 0;0 0 0 0 oy
- 1 m
m 0 0 0o 0 0 0 1 030 0 0 0 o
! m
_ 1l o 0o o 0 0 0 0!0 0 0 0 o
1 1 i m
— — a
oo 0 -0 o x; © 0 o0io0 0 0 o0 6
> = ' m >
u’ o 0 0o o 1 L o oin® 1} o o o
m i
v’ 0 0 0 o o 1 LnL:+o0o o n® 13 o
m 1 . ..0 _
L
W 1L > 0o 0o 0o olo0 o0 o0 o0 o
2 L2 .3
, 1 ] m
6n o oo B e 0 0iy T o0 o “10
\ ) 2 M2 M M Ny VI iy
L _ 11
8x8 8x4 am
\ 12J

4-6
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where

)\1 = 1+a? ,

A, = ‘?jlf(a1+2a2L+3a3L2)2 ,
Ay = A} (2a,)7", and

A, = M) (2a,+6a, L) .

Equation (4-7) is written more compactly as

' a
Im =<.Ba E @b> “:;1' . (4-8)

82t 1l
o= |Ba . Ba Bb
i
0 ! 14

12x12
so that
m
m a h | 9m
« = - = Fwﬂ -—ea (4-9)
m m
oy o
4-7
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The submatrices of [\ are as follows:

0 0
X, 0
2
_3 0
s 0
L2
-1
B! =
a 1 0
1
-1 0
0 1
1
0 - —
i L
in which A, = = and
37X

1 0 0
0 Al 0
3 M s
LZ L L
2 Moo Ay
L3 LZ L2
0 0 0
1
0 0 T
0 0 0
0 0 0
X - 2
4 >t4
4-8
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0 0 0
0 0 0
A T
L2 L
. .z M
L3 L2
0 0 0
0 0 0
0 0 0
1
T 0 0
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0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
-1
-@a Bb: ,
0 0 0 0
-L -LZ 0 0
0 0 0 0
0 0 -L 1.2
- _
8x4

and 14 is the 4 x4 identity matrix.

For linear orthotropic shells of revolution the relations between the
stress resultants, ¢, and the strains and changes of curvature, €, of the

middle surface are

g = E € =
[ ng } By, By 1 (e |
np B, By | €p
_ | Me | . Ba3 Yeo L (4-10)
my Dy Pr2 Ke
me Dy D22 Ko
mggp Di3 L Keg
L r . — o
4-9



in which
By
Bio
and

E: h ’ E.h
:___&_____ , B _—_.__.__(_e__..
1-V€V(p 22 ].-Vel}(p
Es hy E,hy
1f sz 1-(f;u€ v Bas =
V¢t £
2
h
1z By

1%
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(4-11)

The constants appearing in Equations (4-10) and (4-11) are defined as

follows:
E€ , E‘p
Ue ’ UCP

Gs(p
h

Young's modulus of elasticity in the § and ¢ directions,

respectively,

Poisson's ratio corresponding to the £ and ¢ directions,

respectively,
shearing modulus, and

thickness of the shell wall,

The strain displacement relations for a shell of revolution are given in

Equation (A-6).. The strains can be expressed in terms of the m-th displace-

ment coefficients as

e =W_(6) " =

4-10

’
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((21-¥) uoryenby)

219

0 0 0
0 0 0
0 0 0

STHE  §'HEE

SH-
... ¢
JH- 5°H
mwmm Nwmm J°H
1
0 0 Nw HE
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[ S

ey

fi
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in which
H = l- H = _.l..
1 A 4 AZ
Rl Rl
H = — H = == ,
2 AR 5 AZR
m rn2
H = =5 ’ H = -5 )
3 R 6 RZ
R'R”
Hy = =7 ’
A
2m
He = Ar
’
H9 - 2mDR ,
ARZ
K, = — , and Kg, = — (4-13)
- Ky = Rg , @ = ch -

The strain energy of the shell element in terms of the internal strains

and stresses is

U= / € ds (4-14)

surface

For the m-th harmonic this becomes

U =3 & 1Pa™ (4-15)
in which
ar L sin m({)
L™ = f f W_ (O EW (9 AR < dy d§
cos m(/)
0 0
4-12
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The notation
: sinszp

cos 2I’I'.L(p

indicates that only the squares of sines and cosines occur when the m-th
Fourier terms are substituted into Equation (4-14). The surface element
is given by ,

dS = AR d§ do

in Equation (4-15). Substituting Equation (4-9) into Equation (4-15) one

obtains

1 =|< q
ag’ AN S S B (4-16)
%

[ —
3
I
B
o
3

The work done by the (external) boundary forces acting through the

boundary displacements is

o a 14 0 sin m(P
Vm - f 9m y fm (4-17)
0 a 14 cos m<p
0 .

The radii, a and a’, of the boundary circles are shown on Figure 4-1b,

The total pdtential energy of the element for the m-th harmonic is
' ﬂm = Um - rvm ’ (4-18)

Comparison of Equations (4-15), (4-16), and (4-17) shows that the integral

/271' sin m(ﬂ
cos m(p

4-13
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occurs in both, U m and Vm, so that it may be factored from ﬂm

The condition of minimum potential energy,

m .
8ij

where 94 and leg; are the elements of S and a;n, respectively, yields

o aI4 0 0 ;
% m m 0 a'I4 0 m
3 A Rl + D SRS Sy (. S  (4-19)
' Ol}')n 0 0 .I4 0

in which L :
6 - fw';n<€>& Wm(d) AR dt
0
Let
EXT ™ T
a 4 aa : ab
e 8x8' 8x4
] '
K™= | 0o I, OM 67M = |-coio- R . (4-20)
]
m Ly m
| 0 0 4] e L gas
4x8 4x4

With Equation (4-20) it is possible to eliminate a_;n from Equation (4-19),

so that

4-14
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-1
[z(;‘;-ufg(t{g;) (Gl BT (4-21)

from which the desired stiffness matrix is obtained as

-1
k_ = W0 - KD (\!(an) K;I; ) (4-22)

The computations involved in obtaining G m 2re made on the computer by

use of Weddle's seven point integration formula

x +6h
o

_ 3h
£(x) = g (f +5f + 6, +6f, +£, +5{, +£) ,

where f

£ (x_ +ih) i = 0,(1),6 . (4-23)

For a cylindrical element the integration can be done analytically by

letting A(§) = 1, and R(¢) = a =a. Equation (4-19) then becomes

L

6 =26 . where G = f Wi(6) B W (6) a8 (4-24)
- 0
and . 9y fm
ST e (7 o

The individual terms of _Gm are listed in Section A. 2 for comparison with

the numerical integration using Weddle's formula.

4-15
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4.3 FIXED EDGE FORCES

Fixed edge forces resulting from given loading functions are obtained
by use of the principle of virtual work*. A neéessary and sufficient condition
for equilibrium of any linear structural system is that the virtual work for all
virtual displacements is identically equal to zero. The virtual work of a force

is its scalar product with the virtual displacements of its point of application.

Since the repetitive technique discussed in Section 2 requires proportion-
ality between loading functions and deformation patterns, distributed loadings

assume the following form

0

P (6@ = Z p. (§) cosmg
m=0
o]

PV(€,<P) = Z pin(é) sinm@ , and
m=0
0

Py (69) = D () cosmo  (4-29)
m=0

where
P = BT 4 Bpt + BIE 4 B8

pe) = B+ BT + 8%+ BT , ana

pE) = BT+ BY% + B30+ B (4-26)

*Johann Bernoulli, "Das Prinzip der virtuellen Verr{ickungen," Basle,
Switzerland, January 26, 1717.
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The coefficients B;n are labeled identically to the coefficients a;‘n in Equation
(4-3), so that Equations (4-26) and (4-3) can be written as

NE) = F(e) B™ , and

TT(E)

0

-
v
Q

3

(4-27)

respectively, in which

Fey={o0o 0 0 00 0 1 & 0 0 &8
1 £ & £ 000000 0 0
3x12

- m\ rm\

By %

m m'

B, %

T = ¢ g™y and ™ = oy

3 3

m m

P12 %2

The coefficients O(J.;n for any given boundary displacements are defined from
Equations (4-8), (4-19), and (4-20) as

4-17
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where 1
~1 -1 mY g m
o o (BB 3 () K -
: Tl |
m m
[(5) o
12x8
therefore, from Equation (4-27)
) = B DT oa . (4-29)

The fixed edge forces as indicated on Figure 4-3 are represented in

vector form as ) .

N

]
g™ 8"

g g"lh

i
5

1]
g

H
B ™3

wn
bty
N

m
f

m
\ J

A

<

For example, the derivation of one fixed edge quantity, the moment
Min, due to a loading 'f)m(é) is developed in detail below. As illustrated on
Figure 4-4 a virtual rotation Gﬁf is applied at the left boundary of the element
with all other boundary displacements restrained. The corresponding virtual

displacement field is
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& = ke ™ 1° L (4-30)

f,~ \——Before Virtual Displacement
M
m omfz-l — After Virtual Displacement

Figure 4-4 - Virtual Displacements on Element
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The sum of all virtual work is

2T
/ an oﬁf cos’p a do+
0
2T L .
—m * —m sin @
+ / f Upis () P () AR > dpdé = 0 (4-31)
5 5 cos ¢

As in the derivation of the stiffness matrix, the integrals

sin (P
cos (,0

cancel out, so that, with

m —_—
er = -1
L
a M (-1 + | S @) PT() ARG = 0 (4-32)
0
or 1
ML= o [ S @) 5N AR g (4-33)
0

The other fixed edge forces can be obtained in a similar manner. Using
Equations (4-27), (4-28) and (4-29) and successively applying the above

procedure for each fixed edge force, yields all the virtual work equations as
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—al, 1 0
0 ' -2 14
als L e :
- p™* f F'¢) §(&) A(6) R(&) a8} ™ = 0 (4-34)
0
Thus, the vector of fixed edge forces is given by
1 1
- I 0
a 4' ste
A (R e p™* s p™
0o i-=T4
a
where L
S - / F¥(6) F(&) A(D) R(E) aé (4-35)

0

For a cylindrical shell, A =1, R = a = a, and Equation (4-35) reduces to
y

f m¥* & ,m
£.=-0 S B
where L
S = / F ¢) Fe) a¢,
0
which is
4-21
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Section 5
NUMERICAL FORMULATION

A computer program, coded entirely in Fortran IV, was written to
implement the formulation presented in Sections 2, 3, and 4. A flow chart

is given on Figure 5-1.

Required input to the program are a minimum description of the
geometrical and elastic properties of the whole shell, boundary conditions,
harmonic number, and static loading functions from which the first approxi-

mation is computed for each mode shape.

The subroutine used to solve the eigenproblem
2 -
W M-K)c =0

is the one used by Whetstone and Pearson (1966). Only a few seconds of

computer time are required by this routine to solve low ordered equations.

Two numerical errors are possible in static analysis of a shell by the
state vector walk-through method:
1. Elements are too large for their behavior to be accuraf.ely
described by cubic parabola displacement functions;

2. The number of elements is too large for successive transfer
matrix multiplication to remain accurate.

Both of these errors were studied with a closely related but algebrai-
cally simpler problem of a rectangular plate with two opposite edges simply
supported, thus enabling a single Fourier series solution as in the shell
analysis. For comparison, the exact plate strip stiffness matrix and fixed

edge forces are available from classical plate theory, Dean (1967).
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Read geometric and elastic
properties of whole shell

{

Generate an assembly of
discrete finite elements

Read initial static load
for mode N

]

Walk-through static solution

Store joint circle (a) for boundary quantities
deformations of (b) for interior states and |
modes 1,(1),N-1 joint circle deforma-
tions of mode N

Store stiffness and ‘
mass matrices of Calculate N-th row and
modes 1, (1), N-1 column of stiffness and

A mass matrices

!

Solve the eigenvalue

problem (sz -K)c=0

Y

Check convergence, No o Gengraitec? new
Is accuracy sufficient? ~ > static load from

modes 1, (1), N
1 Yes

| N = N+1 I
No / Is number of desired>

modes reached?

Yes

Figure 5-1 - Flow Chart of Computer Program
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According to this reference, an asymptotic solution with a one-term correc-

tion was possible for a plate strip that complies with the condition

mima
2b

2
) <<]
where m = harmonic number, and a/b = aspect ratio of the strip (a is the

width, b the length of the strip). This criterion was also found to be valid

for an element with a cubic parabola displacement assumption.

In the case of a shell of revolution, a criterion to estimate element
size is the wave length at which an edge disturbance penetrates into the shell.
Approximately one-eighth of this wave length is the maximum element size
to give a sufficiently accurate transfer matrix. For the zeroth harmonic,

the “breathing”-mode; of a shell of revolution the wave length is approxi-

mately
_ 2m
L - T R.(p
where R 2
P T L) <_h?>
R(p = principal radius of ¢ coordinate, and
h = thickness of the shell.

For higher harmonics this wave length becomes shorter; therefore, the
corresponding element size should be reduced accordingly to retain the
relative accuracy. For flexibility in the application, the program permits
variable element sizes. Small elements may be used in regions of bending,

and larger ones in regions where membrane action prevails.
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Section 6

EXAMPLE PROBLEMS

RECTANGULAR PLATE

a=b=1001in.,, h=.714in.,, E = 3x107 1bs/in2,

7.33%10™% 1bs-sec?/in?,

S
0
w

©
i

Simple Side Support

Figure 6.1 - Rectangular Plate
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The following frequencies were obtained for the first harmonic using

10 elements.

For

m =1 1st Mode 2nd Mode

1st approximation 13,7621 cps 34.3716 cps
2nd approximation 13.7311 cps 34.3367 cps
3rd approximation 13.7311 cps 34.3367 cps
10th approximation 13,7311 cps 34.3367 cps

From classical plate theory, the frequencies are

s b fin? _2\?
f = & wherew=;)-Hl——+Jl—

2w aZ b2
and
Eh’
D = >
12(1-v7)
i=j=1 this formula gives
fl,l = 13.7309 cps f1,2 = 34.3274 cps .

The frequencies obtained for higher harmonics are as follows:

lst Mode 2nd Mode

m = 2, 10th approximation 34.3275 cps 54.9418 cps

classical theory 34.3274 cps 54.9438 cps

m = 3, 10th approximation 68.6545 cps 89.2527 cps
classical theory 68.6548 cps 89.2512 cps .
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Static solutions for sine-wave loadings were computed. The results

form =1 and m =5 are summarized below.

X
a

m=1

¥
computed displacements w %{-)

. % x
classical theory 'w(;
m =5

. % [x
computed displacements w >

. skole X
classical theory wi=

.000 .07930 .15085 .20762 .24408 .25664

.000 .07927 .15078 .20756 .24403 .25665

.000 .31074 .59016 .81073 .95160 1.0000

.000 .309 .588 .809 .945 1.00

The computed displacements for m = 5 result from the 10th iteration

on the first mode, using 100 elements.

sk
Normalized to a central deflection of

B3

Normalized to a central deflection of 1.0

6-3
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6.2 CYLINDRICAL SHELL

®
u

5in., L=1in., 2in., 2.5 in., h=.01 in.
3x107 1bs/in%, v =.3, p=133x10"% Ibs-sec?/in*, boundary conditions
left U=V =W=M=0, right N=V=W=M=0

=
n

' Figure 6.2 - Cylindrical Shell

For L =1in.,, and m =0, the sequence of frequency approximations

computed by the program was:

lst Mode 2nd Mode

l1st approximation 6563.28 cps 7478.36 cps

2nd approximation 6483.48 cps 7459.97 cps

3rd approximation 6473.94 cps 7459.94 cps

4th approximation 6472.68 cps 7459.94 cps

5th approximation 6472.51 cps 7459.94 cps
6-4
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Ten elements were used in the above solution. For comparison, the
frequencies of a cylinder with N =V =W =M =0 at the left and the

right boundaries are computed from Donnell's equation:

~2
W AE
f = 5=, where ¢y = ——F5—— ,
2T (1-V2)a2
XZ = 1+c2 a‘.L,
J
2 h2 jra
c = > > , and o, = JIT
12a"(1l-v7)
For j=1,2
£, = 6820 cps, fZ = 7810 cps .

These results are slightly higher because Donnell's equations do not

account for in-plane inertia.

For L =2in., and m = 0, the frequency approximations are,

with 20 elements

lst Mode 2nd Mode

lst approximation 6467.34 cps 6569.46 cps

2nd approximation 6426.56 cps 6594.61 cps

3rd approximation 6415.87 cps 6564.17 cps

4th approximation 6410.59 cps 6583.99 cps

5th approximation 6407.21 cps 6566.82 cps
6-5




and with 10 elements

lst approximation
2nd approximation
3rd approximation
4th approximation

5th approximation

For L =2.51in., m = 0, and 25 elements the vcomputed frequencies are

lst approximation
2nd approximation
3rd approximation
4th approximation

5th approximation

lst Mode
6466.37 cps
6426.67 cps
6415.99 cps
6410.71 cps
6407.31 cps

lst Mode
6443.05 cps
6409.48 cps
6400.73 cps
6396.12 cps
6393.89 cps

LMSC/HREC A791267

2nd Mode
6567.86 cps
6593.80 cps
6563.61 cps

6584.10 cps -

6565.00 cps

2nd Mode
6618.34 cps
6459.09 cps
6679.87 cps
6470.69 cps
6670.64 cps

The results indicate that a few more iterations would be required for

complete convergence.

Static solutions corresponding to a uniform rotationally symmetric

pressure loading are summarized in Table 6-1,

6-6
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Table 6-1

Static Solutions, Cylindrical Shell {m=0)

Bending Moments (in-lbs/in.)

Radial Deflections (in.)

L=2in.
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APPENDIX

Al EQUATIONS OF LINEAR SHELL THEORY

The length of a line element on a shell surface in orthogonal coordinates

is

1/2
2.2 2 ,.2
d, = (Aldx1 + Azdxz) (A-1)
The strain displacement relations for the middle surface of a thin shallow
shell are given by
A
1 1,2 1
€ = ———1u + 2 vV + — w R
1 A1 AIAZ Ry
A
1 2,1 1
€, = TV + t—u + w ,
2 A, , 2 AIAZ R,
v = Ay (-u_> L2 (L)
12 A, Ay A A, ’
, 2 , 1
o o o] <W, 1> A2 -
1 TAC A ) 2 7,2 ’
1 1 7 AL A
e = L (‘L&) Y21, and
2 - T A A T2 , 1 ’
2 1 2 AlAZ
A A
2 1,2 2,1
K = L= W + - w - W ), (A-2)
12 Ay A, (Al » 1 A, , 2 , 12
A-1
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where

.0 .0
() =g ) and ()2 = 7 )

For a shell of revolution in cylindrical coordinates, the position vector

of any point on the middle surface is given by

—

Rit,0) = R(OT_+ Z(HT (A-3)

in which lr and Tz are the unit vectors in the radial and axial directions,

respectively. The coordinates, & and ¢, correspond to x, and x

1 2’
respectively, and represent the length along the axis of revolution and the

angle of longitude, as illustrated on Figure A-1,

Meridian

Axis of _
Revolution

(b) Surface Element
Parallel

Circle

{a) Isometric View of Frustum

Figure A-1 - Geometry of Shell of Revolution

A-2
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For a cylindrical coordinate system, the metric coefficients of Equations
(A-1) and (A-2) are

A€= R“+1 = A, and Ay =R, (A -4)

and the principal curvatures are

1 R_” R”
K, = =— = - = - , and
§ T Rg w2y )2 A3
1 1 1
K = = - B A . (A-s)

The principal radii are shown on Figure A-la and the metric coefficients on
Figure A-1b,

Using these coefficients and curvatures in Equations (A-2), one obtains
the strain displacement relations for a shell of revolution in cylindrical coordi-

nates as

1

_.i. ’+ W
66 = Au Rf ’
——Lv+ 4 u+-Lw
€9 T R AR Ry ’
—-l-u+—v’- R,v
Yep T R A AR ’
Y4
K - —_I_Z‘W//'PRE W, 3
§ A A
1 .. R,
K = -5 W - 5= w , and
@ R AR
2 .s , 2R
K = - 5= w + w , (A-6)
§o AR ARZ
A-3
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where

’ 5 . o
():-é—é; and ()='8‘(—p'-

A.2 INTEGRAL TERMS OF THE STIFFNESS MATRIX FOR A CYLINDRICAL
ELEMENT

The integral for a cylindrical shell element as derived in Section 4 is

given by

The terms of 6 are
- Ym

Gy

|

w
lb—‘

+

@]

— 1 m4 LZ
Gp = (Bzz_z t+ Do | 5

- 1 m4 L3 xn2
Giz = By + Dy~ )5 - 2D, 5 L
a a a
4\ .4 2 2
= 1 m L m L
Gig = (Bzz_z'+D22 |7 - P23 5
a a a
G5 =0,
S, =B._LL
16- 12 a !
A-d




™~
(X
N
o
<
o
Q ZL_Z L_3
K
m N 2\|2/
~ ~2 g
~ gl -
& « o
p A
A N ® o
+- +
- NN o~
Nl m_ < mﬁza
m_ o N ~
) A N
a N o
+ + + <
o ~<H
e S o
Sl Y e
<+ <H H
g¥e  TE[Ye B[
- - - - - - N ~ N
N ~ N -
A A A
N N © O | < +
A Ll AN 1l Lyl Ll N N Nl
[N [N [N [N ® ~
N N N ™ ~ -
R R Bl B1 R n B2 B2 BZ W_.
m m N ™ m m ~— T~ o m
1] 1] " ] ] ] H] 1] [} 1] i
r~ ) o o — N N ) ) 0 Ne)
— — — — — — P ] o o~ N ]
&) & O - - - 9] & 1) 1O )
{®] @] 6]

4




I~
)
S
o
>
™ <#
o g S
o~ N N
& 8| g% gl
S~ -
C o o —
w0 [\2} ~— o —
s A — A ]
b 0 A <{ 3\
— <H o - —
+ + + +
NN N
m_ o m_Za
R ~
@] Dl
< 1)
+ + <
wn 0
e o
P \l/
<t _4 <H _4
£l « gl
~ ~
N ~ -
(] @]
) Rl * : <t
2L_2 L_3 Al L_4 L_4 5L_5 + + SR
.l._a l_a 12 12
m_Za m_Za N ~ m_Za £l © © P
N N -
~ o — — ™~ a ~ o ~
N N M M N N i) m —
m ua] ~ ™ m m S~—— S~—— o m
" i i " " I " I u T
~ 0 o o — . N [32] < n (o)
N o (o] — ~ — o (') ™ o
®; [O 6] o o =y O 6] 6] 6]
O 10 o

L]




LMSC/HREC A791267

< n

T Al e
~ ~ ~la ~1 e
m_ o m_ o ~ ~
—1 L

N N M M
M m ~ )
1l il {] il
r~ [ 0] o o
o o (42 —
&) 6] 0 )

L’
5

)

8y

L3
11 73

2
m
7+36D33
+ 36D

a

+ <— 12 D12
A-17

b
7

4
+ Dy 3
a

Lb
6

81N s ~l B~



LMSC/HREC A791267

~ ~| ~la ~
O T
—~4 —
N M m Q
m ~ ™ 18]
i il 1 H
3 % 2 ~
— 4
1 6] < g
[ o]

e
g “hl S
&l = gl = ) )
- ) o)
Q - M m
m Mm o 1 1
" il ] 1l 1}
Tg O o~ o) [°A
) 0 n ) 0
o IO [ [6] IO




LMSC/HREC A791267

< 1n
R ) NI N
A T R
- - N ™ ™
e . o 3 2
Sl Tl 0 m i i
o _ + +
flw il = N |
™ ) + gle AN w1
@ « A £lo - -
m m ' " ~ - =
‘ 1 M m S—r ~N 0
1} 1} i [ it 1} 1]
— ~ © ~ 0 o o
— — O ~O0 O ~0 —
ny o 16) &) |G V) <
(o] &) o

e e
Bl flw
%) o™
o 5] -
m m
N o0
1 ' .
o ] N
d gl ah,
~N ~
B N m
] " H
— N r~
— — ~
< < [0
(@] IO

A-9




LMSC/HREC A791267

Sl bl e e
m_a m_a Nl N
o < m_ @ m_2a
o 0 N S
N ) m M
n ] ] n
o o — o
e = ~ ~
10 o 15

8,10

8,11

A-10

99
9,10




LMSC/HREC A791267

— m m L4
o1 = (2812 5 - 2355 ?)T '
— m m L5
S9,12 = (2312 2 " 3833 ?)"5— '
5 2 7
= _ L m_ L
Gio10 = 7B 5 F Bss z 7
— m m L5
G10,11 © (3312'{ - 2B3; a) 5
6
— m m L
S10,12 * (3512 a - B3 ?) T
2 .5 3
= - m- L~ L
G111 T Bap Z 5 + 4B, 5,
2 _6 4
= _ m_ L L
Gi1,12 = Baa 2% + 6B33 7
2 7 5
A m_ L L
G212 = By z 7Tt 9By3 5~ » and
Glj = Gji i,j = 1, (1), 12. (A-8)

A.3 PERMUTATION MATRICES FOR VARIOUS BOUNDARY CONDITIONS

The boundary state vectors, s, are partitioned into known and unknown

quantities by use of permutation matrices, Ps’ so that

-—=- = E- = PSS (A'g)
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as indicated in Equation (3-15). A permutation matrix contains the property

of orthogonality, expressed as

P° =P (A-10)

The following is a listing of the permutation matrices arising from various

boundary conditions.

(a) freely supported

0 000 O01O00O 0T U
0 01 0 000O0TO O V=0
0 001 00 O0O0CTO W=0
— 0 0 00 0O0O0O0 1 0
s = = = P s
U 1000000O0]| |N=0 8
T 000 00100 T
S 000 00O0CT10 S
9 0001 0O0O0TGO M=0
_ 4 L i
(b) fixed
U=V =Ww=z=26 =20
Ps = 18
(c) free

|
¢4 : 14
P = e
S |
Lot 9
A-12
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(d) guided-free

O O O O O O -~ O
©O - ©O 0o © © o o
© © 0O 0 - © © o
O © O M~ O O O O
o © —= O O © O O
O O O © O = O O

IHOOOOOOOI

(e) pole

A shell pole requires special attention regarding the harmonic in

question, according to Greenbaum (1964). There are three cases

m=0 U=V=S=6=20 (guided free)

m =1 U+V =T =W =M =0

m =2 U=V=WH=206 =20 - (fixed)
A-13




